Tutor-USA.com Worksheet
Pre-Algebra
Integers \& Absolute Value

Name:

Order the integers from least to greatest.

1) $-3,5,7,-9,10$
2) $-10,-13,0,-3,1$
3) $-1,3,-5,-11,10,12$

$$
9,-3,5,7,10
$$

$-13,-10,-3,0,1$

Order the integers from greatest to least.
4) $5,9,-2,-7,11$
5) $-1,-8,-6,-11,-14$
6) $20,40,-30,-50,100,-250$

$-1,-6,-8,-11,-14$

List the absolute values of the following sets of integers from least to greatest.
7) $\{-3,5,-2,8,7\}$
$=\begin{array}{ll}1 & 1 \\ 8 & 7\end{array}$
8) $\{-10,-30,-40,-50,-5)$

9) $\{1,-3,2,-4,5\}$.

Graph the integers on a number line.

* not to scrulen
a pproxi mate

10) $-3,5,7,-9,10$
11) $-10,-13,0,-3,1$

12) $-1,3,-5,-11,10,12$

$$
-11-5-3
$$

Tutor-USA.com Worksheet
Find the opposite and absolute value.
13) -1010
$|-10|=10$
Compare using $>,<$, or $=$.
16) $|5|=|-5|$

14) 20
$0:-20$
$A V:|20|=20$
17) -7 \qquad
$7 \quad 5$
15) -3
$0: 3$
$A V:|-3|=3$
18) $-7=|-7|$

77
19) Why is the absolute value of a number always positive?

\qquad
\qquad

Master 2.18
Extra Practice 1

Lesson 2.1: Using Models to Multiply Integers

1. a) Evaluate.

$$
(-3)+(-3)+(-3)+(-3)=-12
$$

b) Explain why $(+4) \times(-3)$ has the same value as the expression in part a.

A
2. Use coloured tiles to find each product.
a) $(+4) \times(+3)=12$
b) $(+6) \times(-7)=-4 / 2$
c) $(-5) \times(+3)=-15$
d) $(-8) \times(-3)=24$
3. Use a number line to find each product.
a) $(+8) \times(+2) \doteq 16$
b) $(+3) \times(-4)=-12$
c) $(-6) \times(+6)=-36$
d) $(-9) \times(-2)=18$
4. The ice on Mattias's skating pond melted 2 cm every day for 5 days. Use integers to find the change in the depth of the ice after 5 days.
5. Alisa climbs down a ladder. The rungs on the ladder are 30 cm apart.
a) Alisa climbs down 2 rungs. Use integers to find her total change in elevation.
b) How much higher was Aliya before she climbed down 3 rungs?

\qquad
\qquad

Master 2.22

Extra Practice 5

Lesson 2.5: Order of Operations with Integers

1. Evaluate. State which operation you do first.
a) $8 \times 5-4=36$
b) $(-4)[(-4)+9]=-20$
c) $18 \div[(-7)-2])=-2$
d) $(-3)+(-14) \div(-2)=4$
2. Evaluate. Show all steps.
a) $4(-8)-9=-41$
b) $(-1)+(-20) \div 5=-5$
c) $(-9)+(-4)(-2)=-1$
d) $(-3)[(-8)-11]=57$
3. Evaluate.
a) $\frac{(-5)+(-9)}{2}=-7$
b) $\frac{-12}{(-2)(-3)}=-2$
c) $\frac{24 \div(-6)-1}{-5}=1$
d) $\frac{36}{(-5) \times 2+4}=-6$
4. Evaluate.
a) $(-72) \div 9+4 \times(-3)=-20$
b) $5(-2)-63 \div(-7)^{\prime}=-1$
*c) $\frac{4(-5)+[28 \div(-4)]}{5 \times(-2)+1}=3$
) d) $\frac{4 \times(-4)+(-8)}{[10+(-1)]+[2 \times(-3)]}=-8$
5. Evaluate each expression. Then insert one pair of square brackets in each expression so it evaluates to -1 .
a) $12 \div(-4)+(-8)=-11$

$$
12 \div[(-4)+(-8)]=-1
$$

b) $(-9)+6 \div 3=-7$

$$
[(-9)+6] \div 3=-1
$$

c) $5 \div(-5) \times 0+1=1$

$$
5 \div(-5) \times[0+1]
$$

\qquad
\qquad
Extra Practice 3

Lesson 3.3: Multiplying Fractions

1. Multiply. Estimate to check.
a) $\frac{2}{x} \times \frac{8}{9}=\frac{4}{9}$
b) $\frac{\frac{2}{2}^{\prime}}{2} \times \frac{3}{5}=\frac{3}{10}$
c) $\frac{5}{2} \times \frac{1}{4}=\frac{5}{8}$
d) $\frac{7}{3} \times \frac{5}{3}=\frac{35}{9}$
e) $\frac{412}{8} \times \frac{7}{3}=2$
f) $\frac{2}{5} \times \frac{1}{2}=\frac{1}{5}$
g) $\frac{26}{7} \times \frac{1}{8}=\frac{2}{7}$
h) $\frac{5}{10} \times \frac{\frac{2}{8}}{\frac{4}{2}}=\frac{5}{2}$
2. Daphne replaced light bulbs in her mother's store.

She had $\frac{3}{4}$ of a box of light bulbs. She used $\frac{1}{3}$ of the bulbs.
a) What fraction of the box of light bulbs was left?

$$
\begin{aligned}
& \text { What fraction of the box of light bulbs was left? } \\
& \text { Used } \frac{1}{3} \text { of } \frac{3}{4} \Rightarrow \frac{1}{2} \times \frac{3}{4}=\frac{1}{4} \\
& \text { left: orig nal-used }=\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2} \\
& \text { How many light bulbs might be in a full box? Explain. }
\end{aligned}
$$

The number of bulbs must be divisible
3. Estimate each product.
a) $\frac{7}{2} \times\left(\frac{7}{8}\right)$ about
b) $\left(\frac{15}{12} \times \frac{1}{3} \quad \frac{1}{3} \times 1=\frac{1}{3}\right.$
c) $\left(\frac{32}{5} \times\left(\frac{5}{3}\right)<\right.$ about 2
$\frac{7}{2} \times 1=\frac{7}{2}$ or $3 \frac{1}{2}$ Tabout 1
about $6 \quad 6 \times 2=12$
4. The product of two fractions is $\frac{4}{5}$. One fraction is $\frac{2}{3}$.
5. Multiply. Simplify before multiplying if possible.
a) $\frac{7}{9} \times \frac{18}{21} \frac{2}{3}=\frac{2}{3}$
b) $\frac{2}{10} \times \frac{5}{18} \frac{1}{2}=\frac{1}{4}$
c) $\frac{\frac{x}{15}}{3} \times \frac{204}{2 \beta} 7=\frac{4}{21}$
d) $\frac{x}{20} \times \frac{10}{21}=\frac{1}{6}$

$$
\begin{aligned}
& \text { What is the other fraction? } \\
& \text { (3) } \\
& -\frac{4}{5}+\frac{2}{3}=2 \frac{4}{5} \times \frac{2}{2}=\frac{6}{5}
\end{aligned}
$$

\qquad

Master 3.32 Extra Practice 6

Lesson 3.6: Dividing Fractions

1. Write the reciprocal of each fraction.
a) $\frac{1}{3} \Rightarrow \frac{3}{1}$
b) $\frac{8}{7} \Rightarrow \frac{7}{8}$
c) $\frac{9}{11} \Rightarrow \frac{11}{9}$
d) $\frac{17}{12} \Rightarrow \frac{12}{17}$
2. Use a copy of each number line to illustrate each quotient.
a) $\frac{10}{8} \div \frac{5}{8}=2$

b) $\frac{12}{10} \div\left(\frac{1}{5}\right)_{2}=6$

c) $\frac{7}{9} \div\left(\frac{2}{3}\right) \frac{6}{9}=1 \frac{1}{6}$
d) $\frac{7}{12} \div\left(\frac{1}{4}\right) \frac{3}{12}$

$$
=2 \frac{1}{3}
$$

3. Use multiplication to find each quotient.
a) $\frac{7}{5} \div \frac{1}{3}$
b) $\frac{3}{8} \div \frac{2}{5}$
c) $\frac{4}{10} \div \frac{5}{7}$
d) $\frac{1}{6} \div \frac{1}{7}$
$=\frac{7}{5} \times \frac{3}{1}=\frac{21}{5}$
$\frac{3}{8} \times \frac{5}{2}=\frac{15}{16}$
$\frac{24}{516} \times \frac{7}{5}=\frac{14}{25}$ $\frac{1}{6} \times \frac{7}{1}=\frac{7}{6}$
4. Use common denominators to find each quotient.
a) $\frac{5}{12} \div \frac{1}{4}$
b) $\frac{7}{5} \div \frac{4}{10}$
c) $\frac{2}{3} \div \frac{1}{2}$
d) $\frac{5}{6} \div \frac{3}{4}$

$$
\frac{5}{12} \div \frac{3}{12}=1 \frac{2}{3} \quad \frac{14}{10} \div \frac{4}{10}=3 \frac{1}{2}
$$

$\frac{4}{6} \div \frac{3}{6}=1 \frac{1}{3}$
$\frac{10}{12} \div \frac{9}{12}=1 \frac{1}{9}$
5. Write three division questions that have $\frac{3}{8}$ as their quotient.

Possible
answers
$\frac{7}{8} \div \frac{7}{3}=\frac{3}{8} \quad \frac{9}{16} \div \frac{3}{2}=\frac{3}{8}$
$\frac{11}{12} \div \frac{22}{9}=\frac{3}{8}$
\qquad
\qquad

Master 3.33
Extra Practice 7

Lesson 3.7: Dividing Mixed Numbers

1. Write each mixed number as an improper fraction.
a) $2 \frac{2}{7}=\frac{16}{7}$
b) $1 \frac{1}{6}=\frac{7}{6}$
c) $3 \frac{5}{8}=\frac{29}{8}$
d) $7 \frac{3}{5}=\frac{38}{5}$
2. Use common denominators to find each quotient.
a) $1 \frac{1}{2} \div \frac{1}{8}$
b) $2 \frac{3}{4} \div 1 \frac{1}{16}$
c) $4 \frac{3}{5} \div 1 \frac{1}{15}$
d) $5 \frac{1}{2} \div \frac{7}{8}$
$\frac{3}{2} \div \frac{1}{8}$

$$
\frac{11}{4} \div \frac{17}{16}
$$

$\frac{12}{8} \div \frac{1}{8}=12$
$\frac{44}{16} \div \frac{17}{16}=2 \frac{10}{17}$
$\frac{69}{15} \div \frac{16}{15}=4 \frac{5}{16}$
$\frac{11}{2} \div \frac{7}{8}$
$\frac{44}{8} \div \frac{7}{8}=6 \frac{2}{7}$
3. Use multiplication to find each quotient.
a) $3 \frac{3}{5} \div 1 \frac{3}{20}$
b) $6 \frac{1}{4} \div 2 \frac{3}{5}$
c) $5 \frac{7}{8} \div 2 \frac{5}{12}$
$\frac{25}{4} \div \frac{13}{5}$
$=\frac{18}{8} \times \frac{\frac{10}{23}}{\frac{4}{4}}=\frac{72}{23}=3 \frac{3}{23}$
$=\frac{25}{4} \times \frac{5}{13}$
$=\frac{125}{\text { heck. } 52}=2 \frac{21}{52}$
a) $2 \frac{2}{3} \div 1 \frac{1}{4}$
d) $3 \frac{1}{3} \div 2 \frac{1}{2}$
$\begin{aligned} & \frac{8}{3}=\frac{5}{4} \\ = & \frac{8}{3} \cdot \frac{4}{5}=\frac{32}{15}=2 \frac{2}{15}\end{aligned}$

$$
\begin{array}{ll}
\text { b) } 3 \frac{1}{5} \div 2 \frac{3}{4} & \text { c) } 1 \frac{5}{8} \div 2 \frac{4}{5} \\
\frac{16}{5} \div \frac{11}{4} & \frac{14}{8} \div \frac{14}{5} \\
=\frac{16}{5} \times \frac{4}{11}=\frac{64}{55}=1 \frac{9}{55} & \frac{13}{8} \times \frac{5}{14}=\frac{65}{112}
\end{array}
$$

$$
\frac{47}{8} \div \frac{29}{12}
$$

d) $6 \frac{2}{3} \div 7 \frac{1}{6}$

$$
\frac{10}{3} \div \frac{5}{2}
$$

5. Which statement has the greatest value? How do you know?

$$
=\frac{x_{0}^{2}}{3} \times \frac{2}{x x_{1}}=\frac{4}{3}=1 \frac{1}{3}
$$

(a)) $2 \frac{3}{4} \div \frac{1}{3}$
b) $2 \frac{3}{4}+\frac{1}{3}$
c) $2 \frac{3}{4} \times \frac{1}{3}$
d) $2 \frac{3}{4}-\frac{1}{3}$
e) $2 \frac{3}{4} \div \frac{3}{1}$

Long Answer:
Do all the calculations and
n) $2 \frac{3}{4}+\frac{3}{4}$ is divided by symething
compare the answers
res than I is great
than the starting number
 by $\frac{1}{3}$ is the same
as multiplying by 3.
\qquad
Extra Practice 8

Lesson 3.8: Solving Problems with Fractions

Solve the following problems.
Estimate to check the reasonableness of your solutions.

1. During a one-hour phone-in talk show, 8 callers made calls that took $3 \frac{1}{4}$ min each.
a) How many minutes were used by the 8 callers?

$$
8 \text { (a) } 3 \frac{1}{4} \Rightarrow 8 \times 3 \frac{1}{4}=\frac{28}{1} \times \frac{13}{4}=26
$$

$$
26 \text { minutes }
$$

b) What fraction of the hour was used by these callers?

$$
\frac{26 \min }{60 \min }=\frac{13}{30}
$$

Used.
c) How many minutes were left for other callers?

26 minutes used. Remaining 60-29=34 $\therefore 34$ minutes left.
d) What fraction of the hour was left in the talk show for other callers?

$$
\text { Remaining } \frac{34 \min }{60 \mathrm{~min}}=\frac{17}{30}
$$

2. Ms. Lecky ordered pizza for a party. $1 \frac{5}{8}$ of the vegetarian pizza and $\frac{2}{3}$ of the ham and pineapple pizza were not eaten. How much pizza was left?

$$
1 \frac{5}{8}+\frac{2}{3}=\frac{13 \times 3}{8 \times 3}+\frac{2^{\times 8}}{3 \times 8}=\frac{39}{24}+\frac{16}{24}=\frac{55}{24}=2 \frac{7}{24}
$$

3. A dressmaker needs $3 \frac{3}{8} \mathrm{~m}$ of fabric to sew one dress.

How many dresses can the dressmaker make with 28 m of fabric?

$$
\begin{aligned}
& \text { How many dresses can the dressmaker make with } 28 \mathrm{~m} \text { of fabric? } \\
& 28 \div 3 \frac{3}{8}=\frac{28}{1} \div \frac{27}{8}=\frac{28}{1} \times \frac{8}{27}=\frac{224}{27}=8 \frac{8}{27}
\end{aligned}
$$

4. A dock is $7 \frac{3}{4} \mathrm{~m}$ high. The portion of the dock above water one day was measured at $2 \frac{2}{5} \mathrm{~m}$ high. How much of the dock structure was ?eve water that day? $2 \frac{2}{5}$

$$
\begin{aligned}
& \Rightarrow 7 \frac{3}{4}-2 \frac{2}{5}=\frac{31}{4}-\frac{12}{5} \\
& =\frac{155}{20}-\frac{48}{20}=\frac{107}{20}=5 \frac{7}{20}
\end{aligned}
$$

The right to reproduce or modify this page is restricted to purchasing schools. This page may have been modified from its original. Copyright © 2008 Pearson Education Canada

Adding and Subtracting Fractions (A)

Find the value of each expression in lowest terms.

1. $2 \frac{5}{6}-\left(4 \frac{1}{3}-\frac{3}{2}\right)=0$
2. $\frac{1}{2}+\frac{13}{8}-\frac{11}{12}=\frac{29}{24}=1 \frac{5}{24} 6 \cdot \frac{17}{6}+\frac{5}{3}-3 \frac{1}{2}=1$
3. $1 \frac{1}{5}+\frac{17}{2}-\frac{3}{2}=\frac{41}{5}=8 \frac{1}{5}$ 9. $\frac{11}{2}-\left(\frac{2}{7}+\frac{3}{2}\right)=\frac{26}{7}=3 \frac{5}{7}$
4. $3 \frac{1}{3}+1 \frac{3}{4}-1 \frac{2}{3}=\frac{41}{12}=3 \frac{5}{12}$
5. $\frac{3}{10}-\frac{1}{6}+3 \frac{4}{5}=\frac{59}{15}=3 \frac{14}{15} \cdot \frac{5}{2}+1 \frac{7}{9}+\frac{1}{3}=\frac{83}{18}=4 \frac{11}{18} 11 \cdot \frac{4}{3}-\left(1 \frac{11}{12}-\frac{5}{4}\right)=\frac{2}{3}$
6. $\frac{3}{4}+\frac{2}{7}-\frac{2}{7}=\frac{3}{4}$
7. $1 \frac{11}{12}-\left(1 \frac{3}{4}-\frac{1}{8}\right)=\frac{7}{24}$
8. $2 \frac{1}{3}-\frac{2}{3}+1 \frac{4}{5}=\frac{52}{5}=3 \frac{7}{15}$

Adding and Subtracting Fractions (B)

Find the value of each expression in lowest terms.

1. $4 \frac{1}{2}-\left(1 \frac{1}{2}-\frac{4}{5}\right)=\frac{19}{5}=\frac{24}{5}$
2. $\frac{9}{2}+\frac{3}{8}-\frac{1}{2}=\frac{35}{8}=4 \frac{3}{8}$
3. $1 \frac{5}{8}+4 \frac{1}{2}+3 \frac{1}{2}-\frac{77}{8}=9 \frac{5}{8}$
4. $\frac{7}{4}+\frac{5}{3}+3 \frac{5}{6}=\frac{29}{4}=7 \frac{1}{4}$
5. $\frac{13}{2}-\left(\frac{9}{2}+\frac{1}{3}\right)=\frac{5}{3}=1 \frac{2}{3}$
6. $\frac{1}{4}+1 \frac{3}{11}+\frac{8}{11}=\frac{9}{4}=2 \frac{1}{4}$
7. $\frac{7}{3}+\frac{1}{3}-\frac{2}{11}=\frac{82}{33}=2 \frac{16}{33}$
8. $\frac{5}{9}+1 \frac{1}{3}-\frac{1}{3}=\frac{14}{9}=1 \frac{5}{9}$
9. $\frac{13}{2}-\left(\frac{7}{4}-\frac{1}{10}\right)=\frac{97}{20}=4 \frac{17}{20}$
10. $\frac{19}{12}+\frac{19}{3}-1 \frac{3}{4}=\frac{37}{6}=6 \frac{1}{6}$ 8. $\frac{13}{10}+\frac{5}{6}+1 \frac{11}{12}=\frac{81}{20}=4 \frac{1}{2012} \cdot \frac{23}{4}-1 \frac{3}{4}+\frac{1}{3}=\frac{13}{3}=4 \frac{1}{3}$
\qquad

Master 3.35

Extra Practice 9

Lesson 3.9: Order of Operations with Fractions

1. Evaluate.
a) $\frac{5}{6}-\frac{2}{5} \times\left(\frac{1}{2}+\frac{1}{6}\right)=\frac{17}{30}$
b) $\frac{5}{6}-\frac{2}{5} \times \frac{1}{2}+\frac{1}{6}=\frac{4}{5}$
c) $\left(\frac{5}{6}-\frac{2}{5}\right) \times\left(\frac{1}{2}+\frac{1}{6}\right)=\frac{13}{45}$
2. What do you notice about the expressions and answers in question 1? Explain. Same numbers but different answers. The brackets make the 3. Emma thinks the answer to $1 \frac{1}{2} \div \frac{1}{4} \times \frac{2}{3}$ is the same as the answer to $1 \frac{1}{2} \div\left(\frac{1}{4} \times \frac{2}{3}\right)$. Is Emma correct? Explain your thinking. No, Emma is incorrect.
$\left(\frac{3}{2} \div \frac{1}{4}\right) \times \frac{2}{3}=\left(\frac{3}{2} \times \frac{4}{1}\right) \times \frac{2}{3} \quad \frac{3}{2} \div\left(\frac{1}{4} \times \frac{1}{2}\right)=\frac{3}{2} \div \frac{1}{6}$
$=6 \times \frac{2}{3}=\frac{2}{1} \times \frac{2}{3}=4$

3. Evaluate. Show all steps.
a) $\frac{2}{5} \times\left(\frac{1}{4}+\frac{2}{3}\right)-\frac{3}{10}=\frac{1}{15}$
b) $\frac{7}{9}-\left(\frac{1}{3}+\frac{5}{6}\right) \div 3=\frac{7}{18}$
c) $4 \div \frac{2}{3}-3 \frac{1}{4}+\frac{7}{12}=3 \frac{1}{3}$
4. Add brackets to the expression $\frac{3}{10}+\frac{1}{5} \div \frac{1}{2}-\frac{1}{3} \times \frac{1}{4}$, to find as many different expressions and solutions, as you can.

$$
\begin{aligned}
& \frac{3}{10}+\frac{1}{5} \div \frac{1}{2}-\frac{1}{3} \times \frac{1}{4}=\frac{37}{60}\left(\frac{3}{10}+\frac{1}{5}\right) \div \frac{1}{2}-\frac{1}{3} \times \frac{1}{4}=\frac{11}{12} \frac{3}{10}+\frac{1}{5} \div\left(\frac{1}{2}-\frac{1}{3}\right) \times \frac{1}{4}=\frac{3}{5} \\
& \left(\left(\frac{3}{10}+\frac{1}{5} \div \frac{1}{2}\right)-\frac{1}{3}\right) \times \frac{1}{4}=\frac{11}{120}\left(\frac{3}{10}+\frac{1}{5}\right) \div\left(\frac{1}{2}-\frac{1}{3}\right) \times \frac{1}{4}=\frac{3}{4} \frac{3}{10}+\frac{1}{5} \div \frac{1}{2}-\frac{1}{3} \times \frac{1}{4}
\end{aligned}
$$

\qquad

Master 5.21

Extra Practice 1

Lesson 5.1: Relating Fractions, Decimals and Percents

1. Write each percent as a fraction and as a decimal.
a) 24.5%
b) $2 \frac{4}{5} \%$
$\frac{49}{200}, 0,245$
$\frac{7}{250}, 0.028$
c) 73.25%
d) $99 \frac{3}{4} \%$
2. Use a hundredths chart to represent 1%.

$$
\begin{aligned}
& \frac{399}{400}>0.9975 \\
& \text { on the chat }
\end{aligned}
$$ Shade the chart to represent each percent. \rightarrow snares shaded on the chart

a) $0.3 \% \quad 30$
b) 0.55%
55
c) 0.04%
d) 0.9%
e) $0.335 \% \quad 33.5$
f) $0.5525 \% 55,25$
g) 0.0475% 4. 75
h) $\frac{1}{5} \% 0.2$ $33 \frac{1}{2}$
$55 \frac{1}{4}$

$$
\frac{293}{400}, 0.7325
$$

\qquad
\qquad

Lesson 5.2: Calculating Percents

1. Write each percent as a decimal.

Draw a diagram or number line to illustrate each answer.
a) 275%
2.75
b) 156%
1.56
c) $320 \% 3,2$
d) 0.25%
0.0025
e) $0.5 \% \quad 0,005$
f) 0.58%
0.0058
2. Write each fraction as a percent.

Draw diagrams to illustrate your answers.
a) $\frac{6}{5} \quad 120 \%$
b) $\frac{45}{40} \quad 112,5 \%$
c) $\frac{15}{3} 500 \%$
d) $\frac{9}{6} \quad 150 \%$
e) $\frac{60}{25} 240 \%$
f) $\frac{9}{2} 450 \%$
3. a) Find each percent of the number.

Draw a diagram to illustrate each answer.

$$
\begin{aligned}
& i .400 \% \times 240=4 \times 240=960 \\
& \therefore \quad 40 \%
\end{aligned}
$$

i) 400% of 240
ii) 40% of 240
iii) 4% of 240
iv) 0.4% of 240

$$
\begin{aligned}
& \text { I. } 40 \% \times 240=0.4 \times 240=96 \\
& \text { ii } 40 \times 240=9.6
\end{aligned}
$$

b) What patterns do you see in your answers in part a?
c) Use the patterns in part a to find each percent.

iii $4 \% \times 240=0,04 \times 240=9.6$
iv $0.4 \% \times 240=0.004 \times 240$
i) 4000% of 240
4000% of 240 ii) 0.04% of $2409(0.96 \div 10)$ b. Each answer
4. One hundred sixty students attended Music Night on Thursday night. is $\frac{1}{10}$ The attendance on Friday night was 120% of the attendance on Thursday night. The attendance on Saturday night was 75% of the attendance on Friday night.
a) How many people attended Music Night on Friday night?
b) How many people attended on Saturday night?
c) What was the total attendance for the 3 nights?

F: $120 \% \times 160=1,2 \times 160=\frac{120}{100} \times 160=192$ tb) $5: 75 \% \times 192=$
5. A house was purchased for $\$ 450000$.

Three years later, the house was sold for 124% of its purchase price.
a) What was the selling price of the house?
b) Estimate to check your answer.
c) By how much did the value of the house increase over the three years? $4 c) \operatorname{Tota} 1=160+192+144$
$24 \% \times 450000=\frac{124}{106} \times 4500,00=4558.000=49$
6. In a 500 -word assignment, the teacher noted that 1.2% of the words were incorrectly spelled.
a) How many words were correctly spelled?
b) Estimate to check your answer.

Sb) 124% i= about 120%
10% of $\$ 450000=\$ 45000$

$$
12 \times 10 \%=120 \% \Rightarrow 1>\times \$ 45000
$$

$12 x . \$ 45000=\$ 540.000 \mathrm{so}$ answer
The right to reproduce or modify this page is restricted to purchasing schools,
is reason thispafe may have been modified from its original. Copyright © 2008 Pearson Education Canada
\qquad

\qquad
\qquad
\qquad
Extra Practice 3

Lesson 5.3: Solving Percent Problems

1. Find the number in each case.
a) $\frac{30}{100}=\frac{12}{x}$
a) 30% of a number is 12 .
b) 2% of a number is 9 .
c) 150% of a number is 60 .
b) $\frac{2}{100}=\frac{9}{x}$
d) 55% of a number is 11 .

c) $\frac{150}{100}=\frac{60}{x}$
d) $\frac{55}{100}=\frac{11}{x}$
2. Find the whole amount in each case.
a) 8% is 72 cm .
b) 0.6% is 18 g .
c) 120% is 24 m .
d) 32% is 64 mL .
each case.
a) $\frac{8}{100}=\frac{72}{x} \quad \frac{8 x}{18}=\frac{72 \cdot 100}{8,} \quad x=$
b) $\frac{0.6}{100}=\frac{18}{x}=\frac{6}{1000} \quad \frac{6 x}{\frac{6}{1}}=\frac{(18)(1000)}{61}$
3. Write each increase as a percent.
a) The price of gasoline increased from 93.9ϕ to 99.9ϕ.

$$
\begin{aligned}
& 900 \mathrm{~cm} \\
& \text { c) } \frac{120}{100}=\frac{24}{x} \\
& \text { d) } \frac{32}{100}=\frac{64}{x} \\
& \text { use is } 64
\end{aligned}
$$

$$
x=3000 \mathrm{~g}
$$

b) The price of a car increased from $\$ 32000$ to $\$ 36000$.
c) The price of a loaf of bread increased from $\$ 1.99$ to $\$ 2.49$.

b) increase is \$4000
c) increase is \$0,50
a) The number of employees decreased from 6800 to 5200 .
b) The area of a park decreased from 840 ha to 672 ha.
c) The price of a computer decreased from $\$ 1500$ to $\$ 1200$.
5. A printing machine produces labels.

Four percent of the labels produced are defective. Suppose 372 labels were defective. How many labels are not defective?
6. A field goal kicker was successful 75% of the time. He made 51 field goals.
How many kicks did he make in total?

$$
75 x=100(51)
$$

7. Lesley and Enid left their waitress a 15% tip. The tip was $\$ 10.25$.
What was their total bill, not including the tip?
8. ${ }^{\circ}$ Marcus collects baseball cards. At the end of 2005 , he had 250 cards.

His collection increased by 12% in 2006, and by 15% in 2007.
a) How many baseball cards did Marcus have at the end of 2007 ?
b) Is your answer to part a the same as a 27% increase in the number of cards Marcus had at the

Ba) end of 2005 ? Why or why not?

The right to reproduce or modify this page is restricted to purchasing schools.
This page may have been modified from its original. Copyright © 2008 Pearson Education Canada

$$
\text { b) } 27 \% \text { of } 250=\frac{27}{110} \times 250=\frac{30}{2}=27020 \times 5=57.5
$$

$$
\begin{gathered}
250+67,5=317,50 \\
\text { cards }
\end{gathered}
$$ cards

\qquad

Master 6.21

Extra Practice 2

Lesson 6.2: Solving Equations Using Algebra

1. Solve each equation. Verify the solution.
a) $4 x=32$
b) $-35=-5 x$
c) $-48=8 x$
$x=-6$
a) $\frac{44 x}{4}=\frac{328}{41} x=8$

2. Solve each equation. Verify the solution.
a) $-8 a+11=27$
b) $12 b+21=93$
c) $-42=5 c-27$
d) $6 f-15=-45$
$2 a)-8 a+11=27$
$b=6$
3. Solve each equation. Verify the solution.
a) $2 a+3=4$
b) $15=10+2 b$
c) $3=5 c-6$
d) $9 f-7=\frac{1}{9}$

$$
\text { 4a) } \begin{aligned}
2 a+3 & =4 \\
-3 & -3 \\
\frac{2 a}{12} & =\frac{1}{2}
\end{aligned}
$$

5. Write an equation you can use to answer each question. $a=\frac{1}{2}$

Solve the equation. Verify the solution.
a) Five more than two times number is 17 . What is the number?

b) Six less than five times a number is 29 . What is the number?
6. The Grade 8 students had a graduation dinner. They paid a flat rate of $\$ 125$ for the use of the hall, plus $\$ 13$ for each student who attended. The total cost of the dinner was $\$ 944$. How many students attended the dinner?
a) Write an equation you could use to solve the problem.

$$
\begin{aligned}
12 \text { dinner was s944. } & =944 \\
125+13 x & -125 \\
\frac{13 x}{13} & =\frac{819}{13} \\
x & =63
\end{aligned}
$$

b) Solve the equation. Verify the solution.
7. Use this information:

Ice rental: $\$ 150$
Skate rental: \$3
a) Write a problem that can be solved using an equation.
b) Write the equation, then solve the problem.

The right to reproduce this page is restricted to purchasing schools.
This page may have been modified from its original. Copyright © 2008 Pearson Education Canada
\qquad
\qquad

Lesson 6.3: Solving Equations Involving Fractions

1. Solve each equation. Verify the solution.
a) $\frac{t}{4}=7$

$$
t=28 \quad \text { b) } \frac{a}{3}=9
$$

$$
a=27
$$

c) $\frac{b}{7}=11$ $b=77$
d) $\frac{c}{6}=12 \quad c=72$
2. Solve each equation. Verify the solution.
a) $\frac{d}{5}=-8$

$$
d=-40
$$

b) $\frac{f}{-6}=10 \quad f=60$
c) $\frac{k}{-2}=-11$

$$
k=22
$$

d) $\frac{q}{3}=-12, q=-36$

$$
t=28
$$

$a=27$

$$
\begin{aligned}
2 a)_{T}^{5}\left(\frac{d}{5}\right)_{1} & =(-8)^{5} \\
d & =-40
\end{aligned}
$$

3. One-quarter of the chicken pieces in the dish are wings. There are 7 wings.

How many chicken pieces are in the dish?
a) Write an equation you can use to solve the problem.
a) $\frac{1}{4}$ of $P \Rightarrow$
$28 \quad$ c) $\frac{28}{4}=$
$\begin{aligned} & \frac{n}{3}-2=10 \\ & +2\end{aligned}+2$
b) Solve the equation.
c) Verify the solution.
$\frac{4}{1}\left(\frac{p}{4}\right)=(7) 4$

$$
P=28
$$

$$
f=-60
$$

4. Solve each equation. Verify the solution.
a) $\frac{n}{3}-2=10$
b) $4-\frac{p}{5}=13$ $n=36$
$p=-45$
c) $\frac{t}{-9}+8=-5$
d) $-17+\frac{n}{-3}=9$
5. For each sentence, write an equation.

Solve the equation to find the number-
a) A number divided by -4 is 7 .
b) Add 4 to an number divided by -3 and the sum is -2 .

6. Check this student's work. Rewrite a correct and complete algebraic solution if necessary.

$$
\begin{aligned}
& \frac{t}{-6}-24=-6 \\
& \checkmark \frac{t}{-6}-24+24=-6+24 \\
& { }^{1} \frac{1}{1}\left(\frac{1}{9}\right)(18)-6 \Rightarrow \text { should be } t=-108 \\
& i=3 \leqslant \text { incorrect }
\end{aligned}
$$

The right to reproduce or modify this page is restricted to purchasing schools.

