Problem of the Week
 Problem E
 Yes We Can!

A local food bank has created a unique 100-day plan for collecting canned food donations.

Day 1 Goal: Collect 50 cans of food.
Day 2 Goal: Collect 3 more cans of food than the current day number plus the same number of cans collected on day 1 .

Day 3 Goal: Collect 3 more cans of food than the current day number plus the same number of cans collected on day 2 .

Day 4 Goal: Collect 3 more cans of food than the day number plus the same number of cans collected on day 3 .

```
\vdots
```

Day 100 Goal: Collect 3 more cans of food than the day number plus the same number of cans collected on day 99.

How many cans of food will the food bank collect on the $100^{\text {th }}$ day?

Did you know that the sum of the positive integers from 1 to n can be determined using the formula $\frac{n(n+1)}{2}$? For example, the sum of the integers $1+2+3+4=\frac{4(5)}{2}=10$. This result can be verified by simply adding the 4 numbers. You can also easily verify that the sum of the first 5 positive integers is $\frac{5(6)}{2}=15$.
Depending on your approach to the problem, this formula may be useful. As a challenge, one may wish to prove this formula holds for any positive integer n.

Extension: Assuming their target is met each day of the 100-day campaign, how many cans of food will they collect in total?

